Lecture Notes: 4-2 The Mean Value Theorem (PART 1)

Motivating Examples: Draw several examples of graphs of functions such that (i) the domain is $[a, b]$ and (ii) $f(a)=f(b)$. Note you are not required to make sketches that are continuous or differentable, though you may choose to do so.

QUESTION 1: What does it mean to call something a Theorem in a mathematics course?
It's a statement that is always true provided all Hypotheses) (ie the "IF" part) hold and it's possible to prove the statement always holds.
ie. - a pattern that seems to hold

- an argument that shows it always holds.

QUESTION 2: What is the difference between a conjecture and a Theorem in a mathematics course?
conjecture: A pattern (or rule) you think holds.
theorem: A pattern (or rule) you think holds along with an explanation that proves you're right.

QUESTION 3: State in plain old English (or draw a picture) to explain what it means for the graph of $f(x)$ if you know $f^{\prime}(c)=0$.
The tangent to curve is horizontal at

$$
x=c .
$$

where $f(a)=f(b)$
QUESTION 4: Based on our examples on the previous page and your knowledge of graphs more broadly, what requirements would be needed to guarantee the existence of an x-value c in the open interval (a, b) such that $f^{\prime}(c)=0$?
You're gonna have a problem if f isn't continuous or has points of nondifferentiability.
nine syllables!"

RIle's Theorem: If

- $f(x)$ is continuous on $[a, b]$
and
- $f(x)$ is differentiable on (a, b)
and
- $f(a)=f(b)$,
then there is a number c in the interval (a, b) such that $f^{\prime}(c)=0$.

QUESTION 5: Now that we see a pattern, can we give an argument for why that pattern should hold? (HINT: What does the Extreme Value Theorem say again??)
argument
Since $f(x)$ is continuous, EVThm implies $f(x)$ has an absolute maximum and absolute minimum.
Since $f(x)$ is differentiable, these extreme values would have to occur at "turn around" points (where $f^{\prime}(x)=0$) or end points. But the end points have the same y-value! So... then's got to be a max elsewhere, a min elsewhere, or... (tricky) the max =min.

2

1. Consider $f(x)=x^{3}-2 x^{2}-4 x+2$ on the interval $[-2,2]$.
(a) Verify that the function $f(x)$ satisfies the hypothesis of Rolle's Theorem on the given interval.

Since $f(x)$ is a polynomial, it's continuous and differentiable every where. So it's certainly continuous on $[-2,2]$ and differentiable on $(-2,2)$.
Note: Complete sentences in English w/ proper punction.
(b) Find all numbers c that satisfy the conclusion of Rolle's Theorem.
thinking:
Need x-values
where

$$
\begin{gathered}
\text { sher } \\
\text { (1) f }=0 \\
\text { and }
\end{gathered}
$$

(2) x in $(-2,2)$
work:
$f^{\prime}(x)=3 x^{2}-4 x-4=(3 x+2)(x-2)$
$f^{\prime}(x)=0$ when $x=\frac{-2}{3}$ or $x=2$ in $(-2,2)$
answer: $c=2 / 3$
(c) Sketch the graph on your calculator to show that your answer above are correct.

2. Use Rolle's Theorem to show that the equation $x^{3}-15 x+d=0$ can have at most one solution in the interval $[-2,2]$.
HINT: Show that there is no way there could be two solutions!
OK. I'll follow the hint. What if $f(x)=x^{3}-15 x+d$ has two solutions in $[-2,2]$? Then $f(x)$ would have two x-values (say $x=a+x=b$) where $f(a)=0=f(b)$. [Rollis Thu uses fo so Ill find that.]

Now $f^{\prime}(x)=3 x^{2}+15=0$ if $x= \pm \sqrt{5}$. But neither $\sqrt{5}$ or $-\sqrt{5}$ are in $[-2,2]$. So $f(x)$ has no turn around points. So it can't have two solutions.

MOtIvating Examples: Draw several examples of graphs of functions such that (i) the domain is [abb], (ii) $f(x)$ is continuous on $[a, b]$, and (iii) $f(x)$ is differentiable on $[a, b]$. We are not assuming that $f(a)=f(b)$ no jumps
smooth

 here)
QUESTION 6: In each picture above, draw (or in some other way identify) the quantity:

$$
\begin{aligned}
& \frac{f(b)-f(a)}{b-a} .
\end{aligned}=m=\text { slope of line between }
$$

What would this quantity be if Rolle's Theorem applied? If $f(a)=f(b)$, this line is horizontal.
So $m=0$.
The MEAN VALUE Theorem: If $f(x)$ is continuous on $[a, b]$ and differentiable on (a, b), then there is a number c in the interval (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

(intuitively)
there is some x-value c in (a, b) where slope of tangent (in green) is the same as slope of line between end points (the line L in blue)

ObSERVATION: The Mean Value Theorem is just Rolle's Theorem if you turn your head sideways. alternately: picture the x-axis as parallel to line L (in blue). rigorously: Make a new function

$$
h(x)=f(x)-L(x),
$$

then apply Roll's Thy.

QUESTION 7: Assume that $f(x)$ is continuous and differentiable on the interval $[a, b]$ and assume there exists some x-value d in (a, b) such that $f(d)>f(a)$, can you draw any conclusion about $f^{\prime}(x)$? Why or why not?

There's got to be some places where $f^{\prime}(x)$ is positive. (Alternately, apply MVThm

THEOREM 5: If $f^{\prime}(x)=0$ for all x in the interval (a, b), then

$$
f(x)=c \text { on }(a, b) \text {. }
$$

$\begin{aligned} & \text { alternately } \rightarrow \text { the graph of } f(x) \text { is horizontal or constant } \\ & \text { or flat on }(a, b) .\end{aligned}$
QUESTION 8: How would you explain why this theorem is true? (Hint: See your answer to Question 7!)
The answer to Question 7 shows that if $f(x)$ was not constant, then $f^{\prime}(x)$ would not always be zero. That is, $f(d)>f(a)$ forces $f^{\prime}(x)>0$ somewhere. Similarly, $f(d)<f(a)$ forces $f^{\prime}(x)<0$ somewhere.

QUESTION 9: If $f(x)$ gives the position of an object as a function of time, what "common sense" idea is the MVT telling us? Theorem 5?

If $f(x)$ gives position over time then
$f^{\prime}(x)$ is instantaneous velocity and $\frac{f(b)-f(a)}{b-a}$ is average velocity from time a to time b.
So MVThm says there must be some time C where a body's instantaneous velocity
equals its average velocity.
So The 5 says if a body's velocity is Zero over some time interval, it's position is constant (ie. it ain't moving!)

